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A RANDOM-EFFECTS REGRESSION MODEL FOR
META-ANALYSIS %

SUMMARY

Many meta-analyses use a random-effects model to account for heterogeneity among study results, beyond
the variation associated with fixed effects. A random-effects regression approach for the synthesis of 2 x 2
tables altows the inclusion of covariates that may explain heterogeneity. A simulation study found that the
random-effects regression method performs well in the context of a meta-analysis of the efficacy of a vaccine
for the prevention of tuberculosis, where certain factors are thought to modify vaccine efficacy. A smoothed
estimator of the within-study variances produced less bias in the estimated regression coefficients. The
method provided very good power for detecting a non-zero intercept term (representing overall treatment
efficacy) but low power for detecting a weak covariate in a meta-analysis of 10 studies. We illustrate the
model by exploring the relationship between vaccine efficacy and one factor thought to modify efficacy. The
model also applies to the meta-analysis of continuous outcomes when covariates are present.

INTRODUCTION

The literature of medical research has become too massive for individual researchers and
clinicians to digest, particularly when studies provide seemingly contradictory conclusions.! Thus
the quantitative synthesis of previous research has become an important part of the scientific
method. ‘Overview’, ‘research synthesis’ and ‘meta-analysis’ are general terms applied to these
techniques for the aggregation and synthesis of prior research.? Two recent reports®* discuss
current statistical methods for data synthesis. .

Rubin® and others have criticized conventional meta-analysis techniques that average the
outcomes of available studies. Instead, Rubin® suggests a need to move beyond current
approaches to understand the underlying science. He proposes that meta-analysis models
estimate the effect of treatment versus control as a function of a set of scientific factors that
influence efficacy (for example, age, race, gender) and a set of design factors (sample size,
randomization, blindness, etc.). As a step toward this goal, we present (in a specific context)
a random-effects regression model for meta-analysis based on ideas presented by Morris.®
Although the basic method applies to a continuous outcome variable, the present paper also
describes a regression approach to supplement the random-effects model of DerSimonian and
Laird” for synthesis of 2x2 tables. The National Research Council report® consistently
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recommends the use of random-effects approaches for meta-analysis and the exploration of 3
sources of variation in study results. 3

Our motivation was a need to synthesize a series of 2x2 tables, each extracted from 3§
a randomized controlled trial of a vaccine, Bacillus Calmette-Guérin (BCG), for the prevention of #

tuberculosis (TB). This vaccine has been in use outside the U.S.A. since 1921, for routine 73

vaccination at birth in many countries worldwide, yet debate over its efficacy continues. The
published trials that we extracted from the literature varied widely in ways that were expected
a priori to provide different true BCG efficacies, and also to provide different estimates of BCG
efficacy. In addition to our overall quantitative estimate of BCG efficacy, our analysis needed
a way to explore the contribution of certain covariates to the observed variation in vaccine
efficacy and, when appropriate, to obtain estimates of vaccine efficacy that adjusted for them. The
methods developed in this paper were applied to studies of the efficacy of the BCG TB vaccine,
and the results are reported elsewhere.?

Simulation studies empirically assessed the performance of the model in this particular
application and suggested modifications that were successful in this context. To illustrate the
method, we present a random-effects regression meta-analysis that adjusts for distance of a trial
from the equator (absolute latitude), a variable with a suspected association with TB vaccine
efficacy.® Latitude accounts for variation in rainfall, humidity, environmental mycobacteria that
may produce natural immunity, temperature, and other factors that may have biological
implications for vaccine efficacy. Preparation of the live vaccine requires refrigeration;
unrefrigerated, it would spoil more quickly in warmer temperatures. Furthermore, direct
exposure of the vaccine to sunlight may reduce counts of live bacteria.

Berlin et al.'® consider the (fixed-effects and random-effects) regression meta-analysis of
epidemiologic dose-response data (slopes), where each study provides separate results for
a (possibly different) series of doses. Our model cannot directly accommodate this type of data
from dose-response studies, but our model has the capacity to include a dose variable, in the same
manner as any other study-level covariate, if each study provides results on a single dose.

If the results from studies are homogeneous, then fixed-effects approaches may be used for
deriving overall estimates of treatment efficacy, and regression models are not needed.
Fortunately, the random-effects method of DerSimonian and Laird” and the random-effects
regression method developed here both reduce to a fixed-effects analysis when the data are
homogeneous.

METHODS
Model

Using the notation of DerSimonian and Laird’, let y; = log. (RR;), where RR; is the relative
risk,'! denote the observed measure of treatment effect in study i, i = 1,...,k. In the no-covariate
situation, we assume that y;|0; ~ N(6;, ¢?) and 6; ~ N(u, D). (6; is the true log-relative-risk of the
ith study, that is, the mean of the distribution of yi» 62 is the variance of y;, and u is the mean and
D the variance of the distribution of 6; across studies.) In introducing 6;, u and D in this way, we
aim primarily to take explicit overall account of some sources of variation among studies. We
have no special attachment to the formal structure of random sampling. In practice (perhaps
through selection processes), the variation that one can observe among the studies in
a meta-analysis may often be less than one might encounter if other studies (actual or
contemplated) were also available or if the treatment were applied outside the well-controlled
structures of randomized trials. :
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To incorporate study-level covariates and thus account for heterogeneity among studies, we
may further specify p by X;a, where X is a row vector that contains the values of the covariates
for study i and a is a column vector of regression coefficients, so that 6; ~ N(X;a, D). (It is
convenient to specify the Gaussian distribution, from the class of two-parameter distributions,
but most of the analysis may proceed without assuming normality. We use normality only in
computing probabilities.) We assume the design vector X; and within-study variance ¢} are
known (in practice, one uses data from individual studies to estimate ¢?), and that we need to
estimate @ and D from the data. Thus we may write y;|0; = 6; +.¢; with ¢;~ N(0, ¢?) and
6, = X;a + &; with §; ~ N(0, D). Combining these components yields the meta-analysis regression
model

vi=Xa+d +e.

We take J; and e; independent, and thus var(y;) =D + o2. The §; represents the ith trial’s true
deviation from the true mean of all trials having the same covariate values (specified in X;). The
predicted value in the random-effects regression model corresponds to the mean value of y (or
log(RR)) for all studies with a specified combination of covariates. The predicted value from
a fixed-effects model, in contrast, corresponds to the single true value for that combination of
covariates'® (there is no residual among-trial heterogeneity, D = 0).

Notice that if D is large relative to the within-study variances o7 (var (y;) & D) or if the studies
have ¢ that do not vary much (var(y;) = D + 6?), then var (y;) is approximately the same for all
studies, so that an ordinary least-squares regression model is approximately correct. At the other
extreme, if D is small relative to the within-study variances, then var (y;) = ¢} and the fixed-effects
weighted-least-squares (WLS) regression model is approximately correct. For situations between
these extremes, a random-effects model that takes into account both sources of variation is
appropriate. A good estimation procedure for the random-effects model will approximate either
the ordinary least-squares model or the fixed-effects weighted-least-squares model when the
circumstances warrant. :

If D and the ¢? were known, we could apply weighted-least-squares regression using weights
proportional to (D + ¢?)~! to provide a minimum-variance unbiased estimator of a. D, however,
is unknown, as is o2, although we use the estimated value s? as a known value of ¢. Note that
one will usually estimate D with more uncertainty than ¢7. The estimation of D is guided by the
number of studies, k, which is generally smaller than the numbers of subjects within the individual
studies that provide the sample sizes for estimation of the ol.

Morris® (page 53) presents an iterative scheme for estimating the between-study variance D (4
in his notation, often 72 in the meta-analysis literature) when the individual studies have known
unequal variances o2. His approach (and ours) iterates between estimating the regression
coefficients a via weighed least squares, where the weights incorporate the current estimate of D,
and estimating the between-study variance D.

Assume that y;|a, D ~ N(X;a, D + s2). If D is an approximately unbiased estimate of D, then
a weighted-least-squares estimate of a is
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Table I. SAS PROC IML code for fitting random-effects regression model for meta-analysis with a continy- k
ous dependent variable y; and one covariate xy (to fit a model with two covariates, insert ‘read all var {x-2i}
into xcov2;” after the seventh line below and replace ‘x = one | xcovl’ with ‘x = one || xcovl || xcov2))

data rereg;

run;
proc iml; use rereg;
read all var {y_i} into y;
read all var (s2} into vsubij;
read all var {x_11} into xcovl;
»y_i is the continuous dependent variable in the regression model;
xx_li is a continuous or binary (0/1) covariate;
*s2_1 is the variance of y i
* Code by Berkey, Hoaglin, Mosteller, Colditz in ‘A random-effects
regression model for meta-analysis’, Statistics in Medicine (1994);
k = nrow (y); one = j (k, 1, 1); x = one || xcovl;
r = ncol(x); print k r;
* r is the number of regression coefficients;
=k is the number of trials in the meta-analysis;
A=0; » A is the between-trial variance (called D in text);
start b; niters = 20;
do iter = 1 to niters;
wsubi = 1/(vsubi + A);
d = diag (wsubi);
covbeta = inv(x’ = d » x);
beta = covbeta » (x’ =d=»y);
sebeta = sqrt (vecdiag (covbeta));
Z = beta/sebeta;
if iter = 1 then print ‘FIXED-EFFECTS MODEL’ A beta sebeta z;
newa = (sum((wsubi) # ((k/(k — 1)) # (y — x * beta) # (y — x » beta) — vsubi)))/
sum (wsubi);
diff = a — newa; a = newa; if (a < 0.0) then a = 0;
if (abs(diff) < -00001) then goto exit;
end;
exit: print ' = » x » converged at iteration’ iter ‘x »x’;
print ’ * between var A not change by more than .00001 between iters*’;
print iter a k vsubi wsubi yxcovbeta;
print ‘*sss s %%« +xs RANDOM-EFFECTS REGRESSION MODEL#s*sssssxss22’;
print beta sebeta z;
finish; run b;
print ' *+sIF Y=LOG(RR) THEN USEt WITHDF =k —r—3ssssssssssnnnnx’;
quit; rum; -

Morris® approximates the variance D by

_ ZW{(klk = My - Xid)? — i}
b=+ ‘ '

LW
i

where k is the number of studies and r is the dimension of the vector a. (Morris also obtains the
restricted maximum-likelihood (REML) estimator of D by replacing W, in the numerator and
denominator of D, but not in ¥, by W2. In our analyses for this paper, on 2 x 2 tables, however,




the REML estimator consistently tended to underestimate D and provided 95 per cent confidence
intervals_that were too narrow.) We force D >0 when the estimate is negative. We begin by
setting D = 0, and we estimate the W, @ and D iteratively until the estimate of D converges,
whereupon & ~ N{a, (X TyX)~Y). The iterative software for fitting this model is written in SAS
PROC IML'? (Table I). '

The presentation up to this point pertains primarily to the analysis of a continuous variable y;.
In our application to vaccine efficacy, y; is the natural logarithm of the relative risk (for
prospective studies). The log-relative-risk is symmetric, and its variance is well understood. We
estimate the log-relative-risk from the 2 x 2 table from study i

disease no disease
vaccine aq; b; n;.
no vaccine ¢ d; n;.

by y: = log.(RR;) = log. [(a:/n;+)/(ci/ni-)]. (The plus or minus subscripts on the row totals
indicate whether the vaccine was present ( + ) or absent ( —).) The variance of log.(RR;) is
customarily estimated'' by [b;/a;n;+ ] + [di/cin;- ]. Later, we present our tactic for dealing with
any a, or ¢; that is zero.

Emerson et al.!® have demonstrated in a similar (though no-covariate, r = 1) situation that,
because each study’s estimate of risk difference (we use relative risk) and the corresponding
estimated variance s? are not independent (the variances of the individual proportions depend
upon the proportions), the DerSimonian-Laird approach (among others) may produce a biased
estimate of overall treatment efficacy. For odds ratios, Raghunathan and Ii'4 also found
substantial bias in treatment effects estimated by the DerSimonian and Laird” method. For the
same reason, bias may be an issue in the random-effects regression model when the continuous
dependent variable is log-relative-risk.

Our simulations (described in the ‘Results’ section) indicate that the correlation between
log.(RR;) and var (log.(RR;)), estimated in the manner described above, does indeed slightly bias
the estimates of a toward the null and D toward zero. We therefore also considered an alternative
estimator for the variance of log,(RR;). Because only the sample sizes n;, and n;_ of the ith study
appear explicitly (the other quantities are means over the k studies), the smoothed estimator

k k
Vai [log.(RR)] = [ 5 (b;/a.v)]' i + [ 5 (di/c,)] [
i=1 i=1

reduces the correlation between log.(RR;) and the estimated var(log.(RR;)). (Whenever g; or ¢;
is 0, we use the adjustment described later.) The smoothed estimator of variance for the ith trial is
based upon the mean of the b;/a; across the trials, and similarly for the d,/c;. This form implicitly
assumes that the true error variances differ between studies solely because of differences in sample
size. :

We may also apply this method to case-control studies by using estimated odds ratios (OR)
instead of relative risks. In the 2 x 2 table of vaccine status by disease status, consider the ‘disease’
column to represent the cases or deaths from the disease and the ‘no disease’ column to represent
the matched controls in a case-control study. Then y; = log.(OR;) = log. [(a:d;)/(c;b;)]. One
customarily estimates its variance'" by (1/a;) + (1/b;) + (1/c;) + (1/d;). (Again, empty cells require
some form of adjustment.) To reduce the correlation between log.(OR;) and its estimated



variance, however, we estimate the variance by

Var [log.(OR))] = [(ai + c;)(i (a:/(a; + c.-)))/k]-l

+ | (@ + c,-)(l - < Zk: (ai/(a; + Ci))>/k)]_l

oo+ di)( S (bufibr + d,.))) / k]"'

| i=1

[oeafi=(fsmean) )]

For study i, the total numbers of cases (a; + c;) and controls (b; + d;) then directly influence its
variance, but its proportions of cases and controls that are vaccinated do not affect its variance
except through the study’s contribution to a k-study mean. This estimator replaces the g; in the
usual estimator by the number of cases who would have been observed in that cell (diseased and
vaccinated) if the ith study had the mean proportion (observed across studies) of diseased (cases)
who were also vaccinated. The b;, ¢; and d; are similarly replaced.

Our objective is that, on average, this procedure for regression in random-effects meta-analysis
is compatible with the DerSimonian and Laird’ random-effects model. This objective is exempli-
fied as follows. If we perform a meta-analysis by the DerSimonian and Laird” method on studies
of boys, and a separate meta-analysis on girls, and if a standard ¢-test that compares the results of
the two meta-analyses shows that their estimates differ significantly, then the random-effects
regression model would also declare a significant sex effect when we analyse the boys’ and girls’
log(RR) together with a binary covariate for gender, and vice versa. (If the between-study
variance D for boys differed greatly from that for girls, then we might expect discrepancies
between the DerSimonian and Laird” and regression model conclusions.) If we consider a con-
tinuous covariate, rather than a binary one such as sex, or if we wish to consider two or more
covariates simultaneously, then the DerSimonian and Laird’ meta-analysis becomes more
difficult to use, because it requires categorization of continuous variables and cross-stratification
in analyses. The random-effects regression method is then an efficacious alternative.

Table I gives code in SAS PROC IML!? for fitting the random-effects regression model with
one covariate x;;, when the outcome (dependent) variable y; (log(RR;) in our application) is

continuous and one has derived the variances s?.

Simulation studies

We focus on features (number of studies to be combined, sample size of each study, number of
predictor variables in the regression model, etc.) relevant to the vaccine meta-analysis that
motivated this methodological work. In particular, we deal only with relative risks. We drew the
values assumed for a, D, k, the n;, and the probability of disease among the control subjects from
preliminary data collected early in the vaccine project. The random numbers for the simulations
came from the SAS functions RANUNI (uniform distribution), RANNOR (normal distribution)
and RANBIN (binomial distribution).!’

No-covariate model

We simulated 1000 meta-analyses. Each included a set of k = 10 generated studies, so that we
created 10,000 studies (or 2 x 2 tables). At each replication, we selected the sample size n; for the




ith study randomly from a pool of preliminary sample sizes observed among the BCG vaccine
trials. By requiring that each n; be even (adding 1 to odd sample sizes), we then assumed that each
treatment group (vaccine/no vaccine) had sample size n;/2, the usual goal in randomized
controlled trials. '

The model that generated the data (the y;) for the ith study, for inclusion in a meta-analysis of
10 studies, was

yi = log.(RR;) = — 0-8387 + 9;

for i=1 to 10, with d;~ N(0,0211). Thus, with only a constant term, «,, we have
X.a = lag =p= — 08387 and D =0-211. The choice ag = — 0-8387 represents a ballpark
estimate for the weighted mean of the log(RR;). The variance 0211 is a value that we might
reasonably expect to obtain from the BCG studies, according to the preliminary data.

After randomly selecting the sample size n; for the ith 2 x 2 table, and setting n;, = n;/2 and
n;- = n;/2 (see the 2 x 2 table for study i in the ‘Model’ section), we randomly selected the value
¢; from a binomial (n;/2, p = 0-05) distribution (that is, the true probability of disease in those not
vaccinated was 0-05) and set d; = n;/2 — c;. In the next step of simulation, we randomly drew
a §; from the normal distribution with mean 0 and variance 0-211. To generate a table with true
log.(RR;) = — 0-8387 + §;, we randomly selected a; from binomial (n;/2, p = 0-05exp
(— 0-8387 + §,)). Finally, b; = n;/2 — a;. (Note that if ; = 0, the g; cell counts would be generated
assuming the true probability 0-05 exp( - 0-8387), and the.c; would be generated independent of
the a; assuming the true probability 0-05. Then the true log(RR;)=1log(0-05exp
(— 0-8387)/0-05) = log (exp(— 0-8387)) = — 0-8387.)

Whenever the generated a; was zero, we added 0'5 to a;, 0-5 to b;, and 1-0 to the row total n; . ;
we treated a zero c; in the same manner. We later, instead, added 1/6 to the a; and b; in such cases
(see Mosteller and Tukey,!® Chapter 5), rather than 1/2, to determine whether our findings were
sensitive to the method used for adjusting empty cells.

From these four simulated counts in the 2x2 table, we computed the observed
log(RR;) = log[(a;/n;+)/(ci/n;-)] for study i and estimated s} by the two methods presented
earlier:

Study-specific
vart [log(RR,)] = [bi/ani+ 1 + [difeini-]

Smoothed

var [log(RR;)] = l: i (bi/ai)]/kni+ + l: i (di/ci):l/kni- .

i=1

The smoothed estimator uses the unweighted mean of the b;/a; and the mean of the d;/c; over the
k = 10 studies.

Using this strategy, we generated a sample of ten estimated log(RR,;), each with an s?, that
become the data used for estimating o and D by the random-effects regression model. The
regression model provided an estimate of a, (a pooled log(RR) from 10 studies), the estimated
se(%o) derived from (X’'VX) ™2, an estimate of the between-study variance (D), and finally a
95 per cent confidence interval for «,. We replicated this process 1000 times, producing 1000 &,
1000 standard errors, 1000 D and 1000 confidence intervals. Hence, we can compare these against
the true values that generated the data. The estimated ‘true’ value for the standard error of g is
the empirical standard deviation of the 1000 estimates of a,.



One-covariate model

The simulation strategy followed the process described above with the following differences. The
model that generated the true log(RR) for the ith study was

lOg,(RRi) =0+ oy X; + 6,'
or, more specifically,
log.(RR;) = — 08387 + 0-3x; + §;

for i =1 to 10, with ; ~ N(0, 0-211). The x; were randomly generated as N(0, 1). (We chose
a normally distributed covariate for our simulation, but in an application x; may be binary or
may come from a non-normal continuous distribution.) Therefore, an increase of one standard
deviation in the predictor variable (x; = 1-0) raises the predicted RR from 0-432 (= exp(— 0-8387)
when x = 0) to 0584 (= exp (— 0-8387 4+ 0-3) when x = 1), and a decrease of one standard
deviation (x; = — 1-0) decreases the predicted RR to 0-320 (= exp (— 0-8387 — 0-3) when
x = = 1). (As stated earlier, under the random-effects model the predicted RR represents the
mean of a distribution.) This represents a weak modifier of vaccine efficacy, but one of clinical
interst if it were true.

We generated the 2 x 2 tables similarly to the no-covariate situation, except that to generate
a table with true log(RR;) = — 0-8387 + 0-3x; + §;, we selected the a; randomly as binomial
(n:/2, p = 0-05 exp (— 0-8387 + 0-3x; + §,)).

We fit a random-effects regression model to the generated data from the 10 studies in each of
the 1000 meta-analyses. We then compared the 1000 estimated @, their 95 per cent confidence
intervals, and the 1000 estimated D with the true values to assess bias and efficiency of the
methodology. We estimated power from the simulation studies for both the no-covariate model
and the single-covariate model.

Two misspecified models

We sought to examine the consequences of fitting a model with no covariates when a variable is
present that modifies the outcome. The 10,000 2 x 2 tables (for 1000 meta-analyses of 10 tables
each) simulated for the one-covariate model (true a, = 0-3) provided such a basis.

A misspecified model also arises when one fits a one-covariate model by including a variable
that has no true association with the outcome. Here, we used the same 2 x 2 tables generated for
the no-covariate situation (true a, = 0), and we generated an independent randomly distributed
N(0, 1) covariate that served as x, in the model fitting. (We did not use this covariate in
generating the 2 x 2 tables.)

RESULTS
No-covariate model
Adequacy of simulation
The 10,000 generated ; values (10 §;’s for each of 1000 meta-analyses) had mean 0004 and
variance 0-210. The generating theoretical values were mean 0-0 and variance 0-211.
Results

Using the study-specific estimator of the o2, the mean of 1000 estimates of @, was — 07928 (true
value — 0-8387) (Table II). Because both values represent a similar relative risk (0-452 versus




Table 1. Random-effects regression analyses of simulated meta-analyses, each consisting of ten 2 x 2 tables.

The random-effects regression model estimated the oo, 2, and D for each meta-analysis. The 0-S adjustment

for empty cells and the ¢, _,— 3 distribution were used. One thousand meta-analyses were simulated for the
no-covariate model and 1000 for the single-covariate model using the true model parameters shown

True model

No covariates One covariate
o= —08387 o;=0 D=0211 ao=— 08387 «, =03 D=0211

Study-specific estimator of o} .
Mean estimate — 07928 0206 — 07882 0-2881 0-204

(sd) (0-1779) (0-150) (0-1954) (0-2281) (0-159)
Mean of se’s (0-1706) (0-1817) (0-2012)

95% coverage 94-9% : 94-6% 94-8%

ly-r-3

90% coverage 88-8% 88-2% 90-0%

li-r-3

80% coverage 78:3% 773% 797%

ti=r-3

50% coverage 489% 480% 52:2%

te-r-3

Smoothed estimator of o}

Mean estimate — 0-8603 0-249 — 08543 0-3030 0-244
(sd) (0-1916) (0-194) (0-2139) (0-2486) (0-202)
Mean of se’s (0-1851) (0-1968) (0-2163)

95% coverage 95-4% 95-5% 94-4%

ty—r~3

90% coverage 90-8% 90-4% 89-5%

Le-r-3

80% coverage 78-9% 78-3% 80-7%

ti-r-3

50% coverage 50-6% 484% 50-5%

ti-r-3

0-432), the resulting estimator of o appears mildly biased toward the null (RR = 1) for this
particular situation. The empirical standard deviation of the 1000 &,’s was 0-1779. This is
reasonably well approximated by the estimated standard error, whose average over the 1000
replications was 0-1706. The mean estimated variance D from the 1000 meta-analyses was 0-2061
(true value 0-211).

We computed 95 per cent confidence intervals around the estimate of ao from each of the 1000
meta-analyses, using the critical value (2262) from £, . Larholt!” found that the ¢ distribution
performed better than the normal distribution in a similar situation. Using the ¢ distribution
(k — 1 = 9d.f), 936 per cent of the confidence intervals covered the true value ao = — 0-8387.
(The normal distribution consistently provided even more under coverage.) The t,-, and
t, - 3 distributions provided 93-7 per cent and 94:3 per cent coverage. The ¢ distribution with k — 4
degrees of freedom, however, provided more appropriate coverage, with 949 per cent of the
confidence intervals enclosing the true ao. Table I1 also presents results for 90 per cent confidence
intervals. (This empirical result pertains to our TB vaccine application, but we have no theoretical
justification for it. It may not hold different n;, D, etc.) -

Using the smoothed estimator of o7, intended to reduce the correlation between o7 and
log(RR,), and the same simulated 2 x 2 tables, the mean ao was — 0-8603 (Table II), which
represents a relative risk (RR) of 0-423 versus the true value 0-432. The empirical standard



deviation of the &,’s was 0-1916; again this is reasonably well approximated by the estimated 3

standard errors, whose average was 0-1851. The mean of the estimates of D was 0-249 (versus 3

0-211). The 95 per cent confidence intervals based on ¢, provided the same coverage as above, 3
93-6 per cent, and t,_, and t,_; provided coverages of 94-1 per cent and 945 per cent, 3
respectively. Again, the coverage for ¢, _ 4, 95-4 per cent, was closest to the theoretical value 95 per
cent.

We conclude that, for the simplest case with no covariates in the model, the estimates of a, and
D appear nearly unbiased, and coverage at 95 per cent is well approximated using the t distriby-
tion with k-4 degrees of freedom. We have a mild preference for use of the smoothed estimator of
variance because it provided slightly less bias in «, and also because it performed better in the
next model.

Model with one covariate
Adequacy of simulation

The 10,000 generated §; values had mean 0-0038 and variance 0-2117. The generating theoretical
values were mean 0-0 and variance 0-211.

Results

Using the study-specific estimator of the 67, the mean of the 1000 estimates of xo was — 0-7882
(true value — 0-8387) (sd = 0-20, Table II). Both values represent a similar relative risk (0-455
versus 0-432), but again this estimator of a, appears slightly biased toward the null. The mean of
1000 estimates of «, was 0-2881 (true value 0-3). The mean estimated variance D from the 1000
meta-analyses was 0-204 (true value of D = 0-211) (Table II).

We computed 95 per cent confidence intervals around the estimates of «, and a, from each of
the 1000 meta-analyses, using -, = 2306 in the computations. The true value ao = — 0-8387
was covered by 921 per cent of the confidence intervals, and the true a; = 0-3 was covered by 92+4
per cent of the confidence intervals. As we saw in the model with no covariates, reducing the
degrees of freedom by 3, thus using ¢, - 5, gave coverage closer to the nominal 95 per cent. Thus
using t,— 5 for ag, 94-6 per cent of these confidence intervals covered the true value, and for a;,
94-8 per cent covered the true value (Table II).

Using the smoothed estimator of o? and the same simulated 2 x 2 tables, the mean of 1000
estimates of @ was — 0-8543, representing a relative risk of 0-426 versus the true value 0-432. The
mean of the 1000 estimated D was 0-244 (versus 0-211). Using the ¢ _ ; distribution for 95 per cent
confidence intervals provided 93-3 per cent coverage of the true ao, and the ¢, s distribution
provided coverage of 95-5 per cent.

The mean estimated a, was 0-303 (true value 0-3). The 1000 95 per cent confidence intervals
computed using t,_, provided 92 per cent coverage of the true a,, and the intervals using
t,— s provided 94-4 per cent coverage (Table II).

The need for this adjustment in the degrees of freedom may arise from our use of the st,
estimated from data of the individual studies, in place of the true known . The substantial
variance in the estimated D’s may also play some role. The actual degrees-of-freedom penalty may
vary by application. It might differ according to the numbers of studies in a meta-analysis, the
magnitude of the within-study variances a7 relative to the between-study variance D (if the o} are
very small relative to D, then we are approximately in the OLS regression situation, where the
degrees of freedom are the usual k — r), the ratio of the largest sZ to the smallest s? among the
k studies in a meta-analysis, or the true parameter values (D and a). In our simulation study, the
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Table 1II. Summary of simulated meta-analyses of ten 2 x 2 tables each, including two misspecified models

(on off-diagonal). The random-effects regression model provided the estimates of ag, ,, and D for each

meta-analysis. The smoothed estimator of 62, the t,_,_3 distribution, and the 0-5 replacement for empty

cells were used. One thousand meta-analyses were simulated for the no-covariate model, and 1000 for the
single-covariate model. using the true model parameters shown

Estimated True model
model No covariates One covariate

#p=—08387 a;=0 D=0211 a=— 08387 «, =03 D=0211

No covariates

Mean estimate —0-8603 0-249 — 08630 0332
(sd) (0-1916) (0-194) (0-2174) (0-242)
95% coverage ty-4 95-4% 951%

Power 97% 93-3%

One covariate

Mean estimate — 0-8597 0-0076 0-249 — 0-8543 0-3030 0244
(sd) (0-2077) (0-2444) (0-205) (0-2139) (0-2486) (0-202)
95% coverage tx-s 95-4% 96:2% 95-5% 94-4%

Power 92:5% na 92% 22%

within-study variances s? are a little smaller on average than the between-study variance D; there
is generally great disparity (an average 90-fold difference) among the within-study variances s?
in a single simulated meta-analysis, and the estimated D’s have a large standard deviation
(around 0-20).

Rarer disease

To see whether smaller incidence rates of TB in the simulation study would have altered our
conclusions, we replicated the one-covariate simulation study, with the assumption that the true
probability of TB in the control group was 0-025 rather than 0-05. The major difference from the
earlier analysis was that power decreased (from 92 per cent to 87-7 per cent for %o and from 22 per
cent to 18-2 per cent for a;). We discuss power after the next subsection. The biases we noted
earlier from use of the study-specific estimator of o persisted for a rarer disease.

Empty cells

We repeated our analysis of the 2 x 2 tables generated from a one-covariate model (assuming the
true probability of TB in the control group was 0-05) with use of an alternative adjustment for
empty cells. Use of the 1/6 correction® for empty cells (adding 1/6 instead of 1/2 to each cell of the
relevant row of the 2 x 2 table) provided essentially the same conclusions outlined earlier. This
held for both the study-specific estimator of o2 and the smoothed estimator. For comparison with
the lower right corner of Table I11, which uses the 1/2 correction and the smoothed estimator of
6?, the 1/6 correction provided a mean estimated D of 0-2777, mean estimated oo of — 0-8646,
mean estimated %, of 0-3099, coverages of the two «’s of 95:6 per cent and 94-6 per cent, and
powers of 90 per cent and 20-8 per cent. We had feared more sensitivity to choice of adjustment.
We found much greater differences attributable to choice of the smoothed estimator of o or the
study-specific estimator. If our simulated probability of TB had been closer to zero, we might
have observed more sensitivity. The value we simulated (0-05), however, is near the mean value
0045 observed in 13 real trials extracted from the literature (see ‘Illustration’ section).



Power

We use the simulations to estimate the power of our random-effects regression model for
meta-analysis. We estimate power here for the version of the model that uses the smoothed
estimator of 67, and with the 3-degrees-of-freedom penalty (d.f. = k — r — 3) in the ¢ distribution,
To test the null hypothesis, we divided each estimate of a and «; by its standard error and
referred the result to the ¢ distribution.

No covariates (r = 1)

" The random-effects regression model with no covariates (r = 1 coefficient in the model) provides
an estimator (similar to that of DerSimonian and Laird) of the overall or combined RR. We found
that if the true RR = 0-43, then the power of the test of the null hypothesis Hy: RR = 1 was 97 per
cent (Table III, upper left). In other words, 97 per cent of the 1000 simulated meta-analyses
provided a statistically significant (p < 0-05 for Hy:cto = 0) estimate of ag.

One or more covariates (r = 2)

We expect, however, to lose power as we add covariates to a model estimated from a small
number of studies (10 in the simulations). This number of studies is in the range of meta-analyses
often used in medicine and public health. According to our simulations, we maintained good
power (92 per cent) for evaluating overall vaccine efficacy (the o, term) when estimated by a model
that includes a weak covariate (Table III, lower right). Our power (only 22 per cent) for detecting
the weak covariate itself (¢, = 0-3), however, was low. The conservative approach that we used for
computing the 95 per cent confidence intervals (the 3 d.f. penalty to maintain nominal coverage)
naturally diminishes power.

Because of cost-effectiveness considerations and side-effects, society may not consider the
implementation of a vaccine worthwhile unless the vaccine provides considerably more than zero
protection. Investigators may therefore have more interest in the power of the test of the null
RR =075 (a 25 per cent protective effect) rather than RR = 1 (zero protective effect). In the
one-covariate model, when the true RR = 0-43, we estimated this power as 58-5 per cent, much
less than 92 per cent power observed above.

Misspecified models

When we fitted the model with no covariate term to the simulated 2 x 2 tables generated with
a weak covariate, we obtained estimates of D (the mean D = 0-332) that were larger than the true
value because the real variability due to the covariate was not being modelled. Yet we still
retained good power (93-3 per cent) for evaluating overall vaccine efficacy (x, in Table I1I, upper
right panel). The coverage was good (951 per cent), but the estimated a, was slightly biased
(— 0-8630 versus the true — 0-8387) away from the null. The penalty for ignoring the weak
covariate (the cost of underfitting) appears small. ,

For the other situation, where no covariate was present in the simulating model but we
estimated the effect of an independent N (0, 1) variable in the model, the penalty (cost of
overfitting) again seemed quite minor (Table III, lower left panel). The mean estimate of D (0-249)
was the same as when we fit the appropriate no-covariate model to the simulated meta-analyses,
and the 95 per cent coverage (¢, - 5) for «o was unchanged at 95-4 per cent. We lost a little power,
97 per cent power from correct model versus 92-5 per cent from the one-covariate model. The
coverage for a, (true a; = 0) was 96:2 per cent.




Table IV. Data from clinical trials of BCG vaccine efficacy (the full SAS code for fitting the random-effects
regression model to these data is available from CSB)

Trial Latitude* Vaccinated Not vaccinated RR 95% CI
Disease No Dis Disease No Dis
1 44° 4 119 11 128 041 0-13-1-26
2 55 6 300 29 274 020 0-09-0-49
3 42 3 228 11 209 026 0-07-0-92
4 52 62 13,536 248 12,619 0-24 0-18-0-31
5 13 33 5,036 47 5,761 0-80 0-52-1-25
6 44 180 1,361 372 1,079 0-46 0-39-0-54
7 19 8 2,537 10 619 020 0-08-0-50
8 13 505 87,886 499 87,892 101 0-89-1-14
9 -27 29 7470 45 7,232 063 0-39-099
10 42 17 1,699 65 1,600 025 0-15-043
11 18 186 50,448 141 27,197 071 0-57-0-89
12 33 5 2,493 3 2,338 1-56 0:37-6-53
13 33 27 16,886 29 17,825 098 0-58-1-66

* In the regression model, the absolute latitude is centred at the mean 33-4615

ILLUSTRATION

A meta-analysis of trials that evaluated the efficacy of the BCG vaccine for preventing TB
motivated our work on the random-effects regression model for meta-analysis. The efficacy of this
vaccine has been controversial; estimates of vaccine efficacy have ranged from detrimental to no
benefit to an 80 per cent protective effect (protective effect = 1 — RR). The emergence of multiple
drug-resistant strains of TB, the resurgence of TB in parallel with the spread of AIDS, and
institutional outbreaks of TB have prompted the reconsideration of broadened use of BCG in the
US.A!S

Details of the search for trials, published and unpublished, and the inclusion criteria appear
elsewhere,® ' so we summarize them briefly here. We identified 13 randomized controlled trials
that evaluated the efficacy of BCG vaccination against tuberculosis. From each trial we extracted
details of vaccine efficacy in the form of a 2 x 2 table of vaccine status (BCG vaccinated or not) by
TB status (TB diagnosis or not during the period of follow-up). These 13 2 x 2 tables contained
no empty cells. We also extracted data on covariates that might explain heterogeneity among
study results. '

Some covariates (age of subjects, dose of vaccine) may influence the true efficacy, and other
factors (study design, quality of follow-up) may influence estimates of true efficacy. For illustra-
tion, consider latitude, one of several factors historically suspected as associated with true vaccine
efficacy. Our analysis examined the relationship between vaccine efficacy and absolute latitude, or
distance of each trial from the equator, which may serve as a surrogate for the presence of
environmental mycobacteria that provide a certain level of natural imfunity against TB.
Latitude is one of a small group of variables analysed, and several appeared important.® Table IV
summarizes data from these trials. The complete SAS code for fitting the random-effects
regression model to these data, and its executed output, is available from the authors (CSB).

The mean rate of TB among unvaccinated control groups in these trials was 4-5 per cent (the
simulation study assumed 5 per cent). The log (RR) for the BCG vaccine tends to decline with
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Figure 1. Log (RR) and distance from equator from 13 RCT’s. A lower log(RR) corresponds to greater vaccine efficacy.
The number of each trial (from Table IV) and the fitted random-effects regression line are shown

increasing distance form the equator in the 13 trials (Figure 1). The apparent outlier (lower left
corner) had the fourth largest variance and thus was down-weighted in the analysis. Studies 12
and 13 (Figure 1) had a variety of methodologic shortcomings, some of which could account for
the apparent lack of vaccine efficacy. When we fitted the random-effects regression model with no
covariates, we estimated the between-trial variance as 0-268 and the pooled estimate of log(RR)
as — 0-5429 with standard error 0-1842. Inclusion of the covariate distance from the equator,
centred at 33-46°, provided a smaller between-trial variance of D = 0-157 for the model
log(RR) = — 06304 — 00268 (x — 33-46), where x was the distance from the equator (in degrees
latitude). This covariate accounted for considerable (41 per cent) heterogeneity. The standard
errors of the estimated coefficients were 0-1591 and 0-01102. If we had not simply begun with
a single covariate (and instead had chosen it after exploration among several potential covari-
ates), we would need to take into account the multiplicity of questions asked, for example, by
using Bonferroni’s inequality (see Ingelfinger et al.,? page 166).

We interpret this model for illustration only. It suggests that at 33-46° above (for example,
southern U.S.A.) or below the equator, the mean relative risk of TB for vaccinated individuals is
0-53, for a mean protective effect of 47 per cent. At 42° north (for example, Chicago), the estimated
mean RR is 042, for a mean protective effect of 58 per cent. Recall the many possible factors that
latitude may be a proxy for, so that we regard the application to these particular geographic areas
as merely illustrative.

We briefly consider the alternative conclusions that we would make under the simpler
fixed-effects model, where the among-trial variance was assumed to be zero (rather than the
random-effects model estimate of 0-157). The fitted fixed-effects regression model was
log(RR) = — 0-5950 — 0-0282 (x — 33-46). The fixed-effects line is similar to the random-effects
line shown in Figure 1, and it provides latitude-specific estimates comparable to those of the
random-effects model. The estimated RR for the southern U.S.A. equals 0-55 instead of 0-53, and
the estimated RR for Chicago equals 0-43 rather than 0-42. The standard errors provided by the
fixed-effects model (0-0696 for ao and 0-0039 for o 1), however, are only 44 per cent and 36 per cent




of the corresponding standard errors from the random-effects model. This considerable under-
estimation of the standard errors would foster overconfidence with major consequences in
significance tests and reported confidence intervals for «, and for a;. Furthermore, the
fixed-effects model implies, for example, that future studies performed in the southern U.S.A. will
arise from a single true RR, estimated 0-55, whereas the random-effects model implies that these
future studies will not arise from a single true RR but from a distribution of true RR’s
(log(RR) ~ N(— 0-63,0-157)). Thus, we expect future studies to observe relative risks over
a much broader range of RR’s than the range enclosed by the usual 95 per cent confidence
interval of the estimated RR.

DISCUSSION

The random-effects regression model provided a good empirical approximation in the vicinity of
the parameters found in the TB vaccine data. The estimation procedure typically converged in
fewer than 10 iterations, with use of a tolerance of 0-00001 for differences between the estimated
D in subsequent iterations. The computing program itself is uncomplicated, so that this method is
relatively simple and computationally inexpensive.

In the future, one might potentially eliminate the small biases in the estimates of @ and D from
the random-effects regression model (analysis of 2 x 2 tables) by use of some alternative estimator
of the a2, because the two estimators that we considered provided biases in opposite directions,
for both the no-covariate and the single-covariate model. The magnitude and direction of the
biases, however, do not present a problem for the meta-analysis for BCG efficacy. Because the
biases for a were smaller when we used the smoothed estimator of a7, we apply this version in the
analysis of the efficacy of BCG for the prevention of tuberculosis.

The random-effects regression estimator of a, (representing overall vaccine efficacy with
x, centred at the sample mean) is quite powerful, but the small number of studies that we have for
analysis limits our power to detect a contribution «, by a weak covariate x;. Because the
simulation study focused on meta-analyses with 10 studies, whereas our application had 13, our
meta-analysis of real vaccine data may have somewhat more power than that estimated by the
simulations.

We found that confidence intervals and significance tests based on a t distribution with
k — r — 3 degrees of freedom maintained nominal coverages close to the 90 per cent and 95 per
cent levels most often reported in statistical analyses. This contrasts with the use by Berlin et al.*®
and Grizzle et al.2° of z statistics for regression parameters with group-level data. The ¢ distribu-
tion often arises in linear regression settings, but the estimated D and s? both offer sources of
variation beyond the usual k — r degrees of freedom; the choice of k — r — 3 degrees of freedom
happened to work well in our context, even as we modified various aspects of the simulation
studies. In further work we hope to learn how to adapt this adjustment to other situations. In the
absence of a general rule, we may need a new simulation study for each application. A simulation
study geared to the particular application would give a basis for choice.

Our findings on coverage are similar to those obtained by Larholt,!” who used simulated
meta-analyses of log-odds-ratios and estimation by the DerSimonian and Laird’” method. For
true D = (0-5)* = 0-25 (we used 0-211) and with 7 studies in each simulated meta-analysis (we used
10), her confidence intervals (based on the normal distribution: see her Table 5, page 67) provided
89-35 per cent coverage, and her confidence intervals based on ;- provided 94-1 per cent
coverage. Raghunathan and Ii,'* in comparing methods for combining log-odds-ratios in multi-
centre clinical trials, also performed a simulation study of the DerSimonian and Laird method.
Using a t distribution with k — 2 degrees of freedom, they obtained for nominal 95 per cent



410 C. BERKEY ET AL.

coverages results ranging from 88 per cent to 99 per cent for the DerSimonian and Laird method,
and two alternative methods provided results as low as 34 per cent. Those authors'* propose
methods for including covariates, but they give no comparative results for them.

We have proposed a random-effects regression method that allows for covariates in the
exploration of sources of variation in the meta-analysis of 2 x 2 tables. In the model, one may
include interaction terms between covariates to investigate whether one covariate modifies the
effect of the other covariate on reported treatmént efficacy. Our method is not, however, directly
applicable to all regression situations, such as when each study, in a meta-analysis of
dose-response studies, reports separate results for a series of doses.!® Our simulation studies
provide evidence that our method works well for model parameters in the vicinity of
a meta-analysis of the efficacy of a TB vaccine. Use of a smoothed estimator of the o2, rather than
a study-specific estimator, produced less bias in the estimated regression coefficients. This
happened because the smoothed estimator reduced the correlation between the log(RR;) from the
2x2 table and its estimated variance. The method maintained its performance when we
simulated a rarer disease. It did not depend on the adjustment used for empty cells in the 2 x 2
table. The method provided very good power for detecting a non-zero intercept term (represent-
ing overall log(RR)), but low power for detecting a weak covariate in meta-analyses of 10 studies.
Our examination of two misspecified models indicated minor penalties for under-fitting or
over-fitting. The illustration demonstrates a situation in which one may relate variation in the
results from different studies to a study-level covariate.
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