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SUMMARY

Appropriate methods for meta-regression applied to a set of clinical trials, and the limitations and pitfalls
in interpretation, are insu�ciently recognized. Here we summarize recent research focusing on these
issues, and consider three published examples of meta-regression in the light of this work. One principal
methodological issue is that meta-regression should be weighted to take account of both within-trial
variances of treatment e�ects and the residual between-trial heterogeneity (that is, heterogeneity not
explained by the covariates in the regression). This corresponds to random e�ects meta-regression. The
associations derived from meta-regressions are observational, and have a weaker interpretation than the
causal relationships derived from randomized comparisons. This applies particularly when averages of
patient characteristics in each trial are used as covariates in the regression. Data dredging is the main
pitfall in reaching reliable conclusions from meta-regression. It can only be avoided by prespeci�cation
of covariates that will be investigated as potential sources of heterogeneity. However, in practice this
is not always easy to achieve. The examples considered in this paper show the tension between the
scienti�c rationale for using meta-regression and the di�cult interpretative problems to which such
analyses are prone. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traditional methods of meta-analysis attempt to combine results in order to obtain a single
summarized ‘e�ect size’. The observed e�ect in each study is an estimate, with some impreci-
sion, of the true e�ect in that study. Statistical heterogeneity refers to the true e�ects in each
study not being identical. Clinical and methodological diversity among the studies included in
a meta-analysis necessarily leads to statistical heterogeneity [1]. In contrast to simple meta-
analysis, meta-regression aims to relate the size of e�ect to one or more characteristics of the
studies involved. For example, placebo controlled clinical trials of a drug at higher doses may
yield larger observed e�ects of the treatment, or clinical trials of a change in diet versus no
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change may yield larger e�ects when the diet produces greater reductions in serum choles-
terol level. The potential scienti�c value of such explorations of sources of heterogeneity has
been emphasized in the past [1–5], so that meta-regression is now becoming a more widely
used technique. Although we focus on clinical trials in this paper, the issues discussed are
also relevant (and indeed may be even more problematic) for meta-analyses of observational
studies.
We use the term meta-regression to indicate the use of trial-level covariates, as distinct

from regression analyses that are possible when individual patient data on outcomes and
covariates are available. In this paper we review recent research on statistical methods for
meta-regression, and then discuss the limitations and pitfalls of the technique. In the light of
this, we examine a number of practical examples where meta-regression has been used within
systematic reviews. We focus on the extent to which meta-regressions in�uence the clinical
conclusions of a systematic review, pointing out problems and areas of uncertainty.
To motivate our paper, we brie�y introduce one example �rst. Johnson et al. report an

investigation of the e�ect of di�erent doses of aspirin in the secondary prevention of stroke,
using data from eleven trials (Table I) [6]. Aspirin was administered in the di�erent trials in
widely ranging doses from 50 to 1500 mg=d. There had been disagreement about the optimal
dose of aspirin in this clinical situation, and the principal aim of the paper is to undertake
a single meta-regression to determine whether higher doses are associated with increased
bene�t. Figure 1 shows the log relative risk estimated in each trial plotted against the aspirin
dose, with the area of each circle inversely proportional to the within-trial variance of the log
relative risk. The purpose of the meta-regression is to quantify the relationship between log
relative risk and aspirin dose, as shown by the line in Figure 1. Further discussion of this
example is deferred to Section 5.1.

2. STATISTICAL METHODS FOR META-REGRESSION

Various statistical methods for meta-regression have been published. For example, �xed e�ect
meta-regression was described originally [7], a random e�ects model more recently [8] and
a fuller comparison of available methods made subsequently [9]. Other papers have also
addressed methodology in this area [10–12]. Here we summarize the main conclusions and
rami�cations from this work. The points are numbered so that they can be referred to when
considering the published examples of meta-regressions in Section 5:

(i) A visual presentation of a meta-regression relationship is essential. A diagram such as
Figure 1 seems to be the most helpful, using symbol sizes that relate to the precision
of each treatment e�ect estimate. If equally sized points are used, it is impossible
to see which trials provide the greatest information, and how this might a�ect the
interpretation. Con�dence intervals around the points tend to pull the eye towards the
small imprecise trials, which is exactly the opposite of what is wanted. A diagram such
as Figure 1 emphasizes that the unit of analysis is the trial, not the individual patient.
If there are few trials, even if there are many patients, meta-regression is unlikely to
be scienti�cally useful.

(ii) Meta-regression investigates whether particular covariates (potential ‘e�ect modi-
�ers’) explain any of the heterogeneity of treatment e�ects between studies. It is not
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Figure 1. Log relative risk of stroke in 13 trials of aspirin versus placebo [6], according to aspirin
dose, together with a summary random e�ects meta-regression. The area of each circle is inversely

proportional to the variance of the log relative risk estimate.

reasonable to assume that all of the heterogeneity is explained, and the possibility of
‘residual heterogeneity’ must be acknowledged in the statistical analysis. The appropri-
ate analysis is therefore ‘random e�ects’ rather than ‘�xed e�ect’ meta-regression. For
given values of the covariates considered, a �xed e�ect analysis estimates the assumed
common e�ect, whereas a random e�ects analysis estimates the mean of a distribution
of e�ects across studies. If residual heterogeneity exists, a random e�ects analysis ap-
propriately yields wider con�dence intervals for the regression coe�cients than a �xed
e�ect analysis.

(iii) The regression should clearly be weighted, so that the more precise studies have more
in�uence in the analysis. However, the weight for each trial should be equal to the
inverse of the sum of the within-trial variance and the residual between-trial variance,
in order to correspond to a random e�ects analysis. Taking weights equal to the inverse
of the within-trial variances alone yields a �xed e�ect meta-regression analysis.

(iv) It is appropriate to use meta-regression to explore sources of heterogeneity even if
an initial overall test for heterogeneity is non-signi�cant. It is well known that this
test often has low power [13] and therefore a non-signi�cant result does not reliably
identify lack of heterogeneity. Furthermore, the test is for general ‘overdispersion’ of
trial results, and does not address whether heterogeneity relates to particular covariates.
In any case, some would argue that such a test for heterogeneity is redundant because
we know, given the diversity of trials in any meta-analysis, that heterogeneity must
exist. Whether we happen to be able to detect it or not is irrelevant.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1559–1573
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(v) Estimating the residual between-trial variance is somewhat problematic. The estimate
is usually imprecise because it is based on rather a limited number of trials. Di�erent
authors have advocated di�erent estimates, for example an empirical Bayes estimate
[8] or a restricted maximum likelihood (REML) estimate [9]. Moreover, conventional
random e�ects methods ignore the imprecision in the between-trial variance estimate.
One way to allow for the imprecision is to adopt a Bayesian approach, using, for
example, non-informative priors [14]. While this is preferable in principle, especially
when the number of trials is small or when the between-trial variance is estimated as
zero, the resulting widening of the con�dence intervals is rather slight in most practical
examples. Choice of ‘non-informative’ priors can also be somewhat problematic in a
Bayesian analysis [15].

(vi) The outcome (or dependent) variable in a meta-regression analysis is usually a summary
statistic, for example the observed log-odds ratio from each trial. The estimated variance
of this summary statistic is assumed to be the true variance, an assumption that is less
appropriate when trials are small. There may also be some bias introduced for binary
outcome data because of a structural relationship between, for example, odds ratio
estimates and their variance estimates based on the counts in a 2× 2 table [8]. A
practical alternative for binary data is often available, since many publications include
the original counts of events and non-events in each treatment group in each trial. The
resulting analysis, a random e�ects logistic regression, is preferable in principle to an
analysis using summary statistics, but again it seems rare to �nd examples where this
makes an important di�erence in practice [9; 11].

(vii) It is easiest to think of meta-regression in the context of a continuous covariate, as in
Figure 1. Heterogeneity is however often addressed in practice by subgrouping trials
with di�erent characteristics. Such subgroup analysis is equivalent to meta-regression
with a categorical trial-level covariate. Considering subgroup analysis formally as a
meta-regression has advantages, since it focuses on di�erences between subgroups as
is appropriate, rather than the e�ects in each subgroup separately. Also, in a random
e�ects setting, allowance is made for residual heterogeneity not explained by the sub-
grouping.

Software to undertake random e�ects meta-regression using summary statistics is available,
for example in Stata [16]. This uses an iterative method to provide REML estimates of regres-
sion parameters, their asymptotic variances, and the residual heterogeneity variance. Software
for random e�ects logistic regression requires software explicitly designed for hierarchical
models. For example, MLwiN and SAS Proc Mixed employ a classical statistical approach,
and BUGS a Bayesian approach [9; 17].

3. LIMITATIONS OF META-REGRESSION

Even if appropriate statistical methods have been used for meta-regression, there are a number
of limitations to the interpretation of the results. These are summarized below:

(i) The relationship described by a meta-regression is an observational association across
trials. Although the original studies may be randomized trials, the meta-regression
is across trials and does not have the bene�t of randomization to underpin a causal
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Figure 2. Hypothetical relationships between age and treatment e�ect both within trials (represented by
the lines) and between trials (represented by the dots). See Section 3(ii) for explanation.

interpretation. One can view meta-regression as a study of the ‘epidemiology of trials’;
it su�ers from the same disadvantages as other observational epidemiological inves-
tigations, notably bias by confounding. Thus an association identi�ed with one trial
characteristic may in reality re�ect a true association with other correlated character-
istics, whether these are known or unknown. This is a particular problem in meta-
regression because there are many characteristics which di�er between the trials in a
meta-analysis, and these can be highly correlated [10].

(ii) Meta-regression is sometimes used to relate the results of the trials to published aver-
ages of patient characteristics within trials, for example average age or proportion of
women. Such analyses are di�cult to interpret. A generally minor issue is that such
relationships may, if the patient averages are based on small samples, be attenuated by
measurement error [12; 18]. More important however is that the relationship with pa-
tient averages across trials may not be the same as the relationship for patients within
trials. Figure 2 shows a hypothetical example of this. In the upper diagram, treatment
e�ect is related to age within each trial (represented by the sloping lines in the �gure),
but is not related to mean age across trials (represented by the dots). In the lower
diagram, the opposite is the case, in that there is a relationship across trials but none
within trials. Such situations can occur in practice [17], and arise through confounding
at either the trial level (biasing the relationship across trials) or at the individual level

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1559–1573
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Table II. Hypothetical results for treatment e�ect according to sex in four trials
(see Section 3(iv) for explanation). All odds ratios are assumed to be equally precise.

Trial Sex Treatment e�ect odds ratio

Trial 1 M 0.7
F 1.0

Trial 2 M 1.0

Trial 3 F 0.4

Trial 4 M 0.7
F 1.0

M versus F overall, 0.8 versus 0.8 (ratio 1.0).
M versus F within trials, 0.7 versus 1.0 (ratio 0.7).

(biasing the relationship within trials). The phenomenon is variously referred to as ‘ag-
gregation bias’, ‘ecological bias’, ‘ecological confounding’ or the ‘ecological fallacy’
[19], and without individual patient data cannot be investigated.

(iii) While the impact of any measurable characteristic of the studies may theoretically be
investigated using meta-regression, results are easier to interpret when the characteristic
has high variability across studies compared to within studies. To illustrate this, suppose
exactly the same wide range of doses had been studied among patients within each of
a set of trials. A single summary of dose might be obtained for each trial by taking the
average dose for patients within the trial. However, a meta-regression on average dose
would be of limited use since the averages from the di�erent trials would be similar to
each other, and there would be little potential to discriminate between the trials [20].
That statistically non-signi�cant relationships should not be equated to absence of true
relationships is of course true in general, but particularly so in these circumstances.

(iv) For categorical covariates, it is sometimes possible to identify, even from published
papers, the relationship with treatment e�ects both within trials and between trials. A
hypothetical example is given in Table II. Trials 1 and 4 contain both sexes (and
results are available separately for men and women), whereas trial 2 recruited only
men and trial 3 only women. We assume that each observed odds ratio in Table II is
equally precise. Comparing men and women overall, the average odds ratio is 0.8 in
men and 0.8 in women (a ratio between sexes of 1.0). Comparing men and women
only within trials, and thus using only trials 1 and 4, the average odds ratio is 0.7
in men and 1.0 in women (a ratio of 0.7). Thus a di�erent answer is obtained if
we rely only on information within trials (which is free from ecological bias across
studies), or if we use all the information (which is more precise). Although this is
simply another example of potential confounding across trials, it emphasizes the need
to separate clearly whether the relationships being described by meta-regression are
within trials, across trials, or (as is often the case) some mixture of the two.

(v) Meta-regression has sometimes been used to investigate whether treatment bene�t de-
pends on the ‘underlying risk’ of the patients in the trial. The underlying risk is usu-
ally measured by the risk or rate of events in each trial’s control group. A conven-
tional meta-regression analysis of this relationship is �awed by regression to the mean
[21]: the measurement error in the covariate (control group risk) appears also in the

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1559–1573
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dependent variable (treatment e�ect) causing an artefactual negative association. More
complex models, which address the dependency in the measurement errors, are needed
to obtain valid results for the relationship between treatment bene�t and underlying
risk [22–24].

(vi) A practical limitation in meta-regression is the availability of data from the primary
papers. Meta-regression requires the estimated treatment e�ect, its variance, and covari-
ate values for each trial in the systematic review. A common reason for not being able
to undertake meta-regression is that these are not all available. Any analysis can only
be based on the subset of trials for which full information happens to be available,
potentially biasing the results.

(vii) Often systematic reviews contain very few studies [25]. For example, in a study of 39
Cochrane systematic reviews, only one contained more than 15 studies with available
data for the primary outcome [26]. Given such numbers of studies, the potential for
robust conclusions from meta-regression analyses is clearly very limited.

4. THE PITFALLS OF META-REGRESSION

Exploring sources of heterogeneity may result in false positive conclusions through ‘data
dredging’. So important is this in practice that one might label it as the principal pitfall
in meta-regression, even aside from the methodological aspects and interpretative limitations
addressed above. This issue is summarized below:

(i) A common situation is that there are few trials in a meta-analysis but many possible
trial or patient characteristics that might explain heterogeneity. Multiple analyses using
each of these characteristics may be undertaken. Some analyses may be done simply
because of observed patterns in the results of the trials, which suggest that a certain
covariate may be important. Such multiple or post hoc analyses lead to data dredging
and a high probability of false positive conclusions.

(ii) False positive conclusions deriving from meta-analyses are particularly hazardous. Post
hoc conclusions from, for example, multiple subgroup analyses within a single clinical
trial should be regarded as hypothesis generating rather than hypothesis testing. These
hypotheses should then be investigated in other trial data sets. In a meta-analysis, which
has accumulated the totality of evidence on a particular issue, there is no possibility of
such external testing or validation. Thus we are left in the dangerous position of having
speculative conclusions, without the ability to investigate them further (at least until
many more trials have been undertaken). Indeed, concern over perceived ethical issues
that stem from such ‘apparently convincing’ �ndings may prevent further research being
undertaken to resolve the issue.

(iii) The only way to protect against such false positive conclusions, as in other situations
[27; 28], is to prespecify which covariates are going to be investigated by subgroup
analyses or meta-regressions. This raises some di�cult issues. The �rst is the need for
a protocol for the meta-analysis that identi�es appropriate covariates. While Cochrane
systematic reviews generally have protocols that are documented and publicly available
[25], other systematic reviews and meta-analyses (for example most of those appearing
in peer reviewed journals) may not. Secondly, in order for decisions about investigating
heterogeneity to be truly prespeci�ed, such a protocol should be drawn up without

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1559–1573
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knowledge of any of the relevant trials’ results. Since meta-analysis summarizes studies
that have already taken place and may be known to the reviewers, this is unlikely to
be achieved in practice. This is especially so since subject-matter specialists should be
involved in identifying suitable covariates that have a strong scienti�c rationale.

(iv) In addition to prespeci�cation, it is necessary to limit the number of covariates pro-
posed for investigation again to protect against false positive conclusions. If multiple
covariates are of real scienti�c interest, false positive conclusions can be limited to
a desired level by using a Bonferroni adjustment to the signi�cance level for each
covariate. Indeed such a strategy might encourage investigators to maintain power for
a very few covariates, rather than attempt to investigate many.

Prespeci�cation of relevant covariates proves di�cult in practice. In a study of 39 systematic
reviews in the Cochrane Database (CDSR), of which 28 had protocols, the covariates that
were speci�ed to be the subject of subgroup analyses or meta-regressions in the protocols were
compared with the analyses which were actually undertaken in the reviews [26]. Amongst 15
that speci�ed some such analyses in the protocol, seven undertook none, three did none that
was speci�ed but undertook some that were not speci�ed, and three undertook ones that were
not speci�ed in addition to those that were. A mere two reviews undertook only ones that had
been prespeci�ed. This exempli�es the practical problem of specifying relevant subgroup or
meta-regression analyses in advance. When faced with the reality of data to hand, either infor-
mation was not available to investigate the originally identi�ed covariates, or the investigators
focused their attention on new apparently important covariates that had not been prespeci�ed.

5. EXAMPLES

We selected three recently published papers that illustrate di�erent applications of, and ap-
proaches to, meta-regression. The basic characteristics of the data available are summarized
in Table I. The papers were chosen to exemplify relevant methodological and interpretative
issues, as outlined in Sections 2 to 4, not to criticize these particular publications. Neither are
all aspects relevant to the interpretation of the meta-regressions discussed below, nor do we
claim that these papers are representative of the use of meta-regression in practice.

5.1. Aspirin in secondary stroke prevention

The �rst example, which has already been described in the introduction, relates to the sec-
ondary prevention of stroke and the dose of aspirin [6]. The statistical analysis used a weighted
linear regression of the log relative risk of stroke on aspirin dose as a continuous covariate
(Figure 1). The regression includes 12 data points, since one of the 11 studies randomized
patients to placebo or one of two doses of aspirin. The weights used in the regression were
the inverse within-trial variances of the log relative risks. Separate analyses assuming either
linear or quadratic relationships between dose and log relative risk were performed, as well
as a cubic spline analysis to allow for more general curvature.
A simple meta-analysis gave a Mantel–Haenszel pooled relative risk bene�t of around

15 per cent (95 per cent CI 6 to 23 per cent). No statistically signi�cant relationships with
dose were identi�ed. For the linear regression, the estimated increase in log relative risk per
100 mg=d increase in dose was reported as 0.0068 (SE 0.0096, 95 per cent CI −0:015 to

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1559–1573
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+0:028, P=0:49). The predicted relative risk bene�t of aspirin decreased from 15 per cent at
50mg=d to 6 per cent at 1500mg=d. The authors concluded that the dose–response relationship
is essentially �at, a potentially valuable �nding given that high doses of aspirin are associated
with adverse side-e�ects.
A number of aspects of this analysis are interesting. The focus of the paper is on one

covariate, aspirin dose, although three regressions (linear, quadratic and cubic spline) were
investigated. Although it is not clear in what sense this was ‘prespeci�ed’, data dredging
would seem to be an unreasonable accusation in this case (Section 4(i)). The large range
of aspirin dose across trials (and no variation within trials) makes meta-regression here a
particularly suitable tool for investigating this as a covariate (Section 3(iii)). Meta-regression
was carried out despite the lack of evidence for heterogeneity overall (reported P=0:23), as
is appropriate (Section 2(iv)).
Summary statistics constituted the dependent variable in the meta-regression (Section 2(vi)),

being the log relative risk in each trial. A �xed e�ect meta-regression was used which does
not allow for potential residual heterogeneity. Thus the standard error of the regression coef-
�cient may be too small (Section 2(ii)). However, in our reanalysis based on the published
information, a random e�ects meta-regression gave a REML estimate of zero for the resid-
ual heterogeneity variance, and so in this case the �xed e�ect and classical random e�ects
meta-regression results coincide. Nevertheless a Bayesian approach, which allows for the im-
precision in the zero estimate of residual variance based on only 11 trials, gives a slightly
larger standard error (Section 2(v)), 0.0123 rather than 0.0096.
The estimated coe�cient of +0:0068 per 100mg=d corresponds to a proportionate increase

in the relative risk of 10 per cent as aspirin dose increases from 50 to 1500 mg=d, implying
decreased e�cacy of aspirin with increasing dose. Conversely, the lower 95 per cent con�-
dence limit of −0:015 corresponds to a 20 per cent decrease in relative risk. Thus while there
is no evidence of a relationship with aspirin dose, the data cannot rule out a modest (and
perhaps clinically relevant) increased bene�t at higher aspirin doses. As always, it is tempting
to accept lack of evidence for an e�ect as evidence of no e�ect, while of course this may be
a false negative conclusion (Section 3(iii)).
The authors recognize in their discussion that the relationship with aspirin dose is across

trials and may be confounded by other trial or patient characteristics (Section 3(i)). They point
out that there was only one trial with more than one aspirin dose group (300 and 1200mg=d);
this provided the only directly randomized evidence about aspirin dose and treatment bene�t
(Section 3(iv)). In the meta-regression, this trial is apparently handled by including the placebo
group twice, once for each aspirin dose. Appropriate inclusion of a three-arm trial in a meta-
analysis (or meta-regression) requires that the placebo group data are only used once, which
can be achieved by considering the original binary data directly (Section 2(vi)) rather than
using log relative risks as summary statistics [29].

5.2. Beta-blockers after myocardial infarction

Freemantle et al. report a systematic review of 31 clinical trials of the long-term use of
beta-blockers after myocardial infarction (Table I) [30]. The review aims to determine the
e�ect on mortality of beta-blockers overall, and makes use of meta-regressions to address
secondary clinical questions mainly relating to mechanisms of action of the di�erent beta-
blockers. The authors report investigations of four dichotomous characteristics. The focus was
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on whether beta-blockers that act speci�cally on the heart (cardioselective), or speci�cally
on the sympathetic nervous system (intrinsic sympathomimetic activity), were associated with
higher e�cacy in these trials, because these factors had been identi�ed as potentially important
in a previous meta-analysis. Drugs can be either cardioselective alone, sympathomimetic active
alone, both, or neither. Two further characteristics of the studies were investigated: whether
there was initial intravenous treatment, and publication date (before or after the median of
1982) as a proxy for the availability of additional treatment options.
The meta-analysis demonstrated a statistically signi�cant bene�t of beta-blockers on all-

cause mortality (random e�ects odds ratio 0.77, 95 per cent CI 0.69 to 0.85), without sta-
tistically signi�cant heterogeneity (P=0:16). Random e�ects meta-regression was undertaken
using a Bayesian approach, employing the binomial outcome data available in each trial. The
estimated relative odds ratio for cardioselective drugs versus others was 1.10 (95 per cent CI
0.89 to 1.39), and for intrinsic sympathomimetic active drugs versus others was 1.19 (95 per
cent CI 0.96 to 1.47). These indicate trends towards reduced bene�t of beta-blockers with
these characteristics. The authors concluded on the basis of the latter nearly signi�cant �nding,
that drugs with intrinsic sympathomimetic activity ‘should be avoided’. Neither early initial
intravenous treatment nor publication date appeared to a�ect the e�cacy of the beta-blockers.
This paper used a Bayesian random e�ects logistic regression analysis (Section 2(vi)), thus

avoiding unduly precise inferences by accounting for imprecision in estimation of random
e�ects (Section 2(v)). With 31 studies in the meta-analysis, random e�ects may be estimated
with reasonable precision, and in fact non-Bayesian random e�ects meta-regressions give very
similar results in this example. The investigation of heterogeneity employs only dichotomous
covariates, and the authors have contrasted subgroups by using meta-regression as is appro-
priate (Section 3(vii)).
The meta-regression associations are observational in nature (Section 3(i)), and should not

be interpreted as if they come from randomized comparisons. Indeed, the potential confounding
between the four characteristics considered could be directly assessed, rather than carrying
out four univariate meta-regressions. For example, confounding between cardioselectivity and
intrinsic sympathomimetic activity could have been addressed in a meta-regression using both
covariates simultaneously.
This example provides a typical situation regarding the di�culty in ‘prespeci�cation’ of

covariates (Section 4(iii)). Two of the covariates were identi�ed as potentially important
in a previous meta-analysis, which included over half of the trials that were in the current
meta-analysis. Thus the ‘prespeci�cation’ is to an extent data dependent. To what degree the
other two covariates were prespeci�ed is unclear, and indeed other covariates may have been
investigated but not reported. Such a situation is typical for meta-analyses published in peer
reviewed journals, in the absence of published protocols (Section 4(iii)). Given that (at least)
four covariates were investigated, conclusions regarding the most signi�cant one should be
down-played (Section 4(iv)). One might therefore regard the authors’ conclusions regarding
beta-blockers with intrinsic sympathomimetic activity as overly strong.

5.3. Aminoglycosides for treating infections

Barza et al. present a systematic review of 19 randomized trials of single versus multiple (two
or more) daily doses of aminoglycosides in the treatment of bacterial infections (Table I) [31].
Considerable heterogeneity of e�ect was discovered for the outcome of ‘clinical failure’ (the
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original trials’ de�nitions were used for this), and the authors used meta-regression as an ex-
ploratory tool to try and explain it. Seven characteristics were investigated, covering aspects of
patients (proportion of bacteria isolated from patients that were found to be of pseudomonas
species, which is more resistant to commonly used antibiotics), interventions (speci�c amino-
glycoside, number of multiple doses, duration of treatment, presence of concurrent antibiotic
medication) and other characteristics (publication date, control group event rate).
In a random e�ects meta-analysis, the single daily dose regimen was associated with a

non-signi�cant decrease in risk of clinical failure, with an overall relative risk of 0.83 (95
per cent CI 0.57 to 1.21). The test for heterogeneity was signi�cant (P=0:03). A �xed e�ect
meta-regression was used, with log relative risk as the summary statistic response variable.
The e�cacy of single versus multiple doses of aminoglycosides was found to be unrelated to
six of the covariates. However, for the 13 trials that provided information on pseudomonas, a
signi�cant relationship was observed: a 1 per cent increase in the prevalence of pseudomonas
was associated with a 4.1 per cent increased bene�t (95 per cent CI 1.6 per cent to 6.6 per
cent, P=0:001) of single dose over multiple dose aminoglycosides.
As in the �rst example, the �xed e�ect meta-regression does not allow for residual het-

erogeneity (Section 2(ii)) and the regression coe�cients are too precisely estimated. The
published paper does not contain the pseudomonas data, so the meta-regression cannot be
represented visually here (Section 2(i)), and the analysis cannot be repeated using the more
appropriate random e�ects method (Section 2(iii)).
The �nding regarding pseudomonas is di�cult to interpret. First, the analysis is a post

hoc investigation, which is prone to produce false positive results (Section 4(i)). The �nding
may not be a real e�ect even though the signi�cance level appears extreme. Second, the
pseudomonas covariate is not available in six out of the 19 trials (Section 3(iv)). Third, the
large number of covariates investigated strongly increases the chance of false positive results
(Section 4(iv)). The seven characteristics investigated represent one for every three studies.
Fourth, the association is observational across trials (Section 3(i)). Yet some exploratory
�ndings may of course be real. If the �nding regarding pseudomonas were real, there would
likely be direct clinical consequences for treatment of patients with pseudomonas, and ethical
restrictions on obtaining further randomized evidence. The unresolved challenge is to know
which exploratory �ndings are real, and which are not.
The pseudomonas covariate is a summary of patient characteristics rather than a speci�c

attribute of the trial (Section 3(ii)). The �nding is an ecological association and not an
association that can necessarily be extrapolated to individual patients. In other words, trials
in which the patients had a higher prevalence of pseudomonas showed a greater treatment
bene�t, rather than patients with pseudomonas necessarily being the actual patients who are
more likely to bene�t. The authors recognize this and point out that ‘this does not necessarily
mean that patients with pseudomonas infection did better with a single daily dose’. A �nal
point is that one of the covariates investigated was control group risk, and for this the use of
simple meta-regression techniques is incorrect (Section 3(v)).

6. DISCUSSION

The three papers discussed above illustrate di�erent objectives of meta-regression. The �rst
aims to answer new questions by examining the in�uence of one key characteristic on the
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size of treatment e�ect; the second attempts to gain additional insight into treatments by
supplementing a meta-analysis with investigations of important clinical di�erences between
trials; and the third generates new questions by trying to determine causes of variation in
results of di�erent trials. The examples are no doubt not typical in a number of respects, not
least in that they include a generally large number of studies, individuals and events. Problems
relating to data dredging, in essence over-�tting the available data, will be exacerbated when
there are fewer studies even when covariates are prespeci�ed. This is compounded by the
(natural) tendency of authors to over-interpret results in published papers in order to render
them apparently exciting or novel. Furthermore, data dredging is often hidden from the reader.
The same methodological issues and interpretative problems we discuss are relevant in un-

dertaking meta-regressions of the �ndings in observational studies. Indeed some of the prob-
lems are more severe [32]. Observational studies are more variable in design than randomized
trials, and heterogeneity in their results may re�ect design di�erences rather than clinical
diversity. Selection and other biases often hinder the interpretation of both meta-analyses
and meta-regressions. The variables adjusted for in statistical analyses to reduce confounding
within studies are almost always di�erent (or di�erently handled) in each study. The binary
nature of outcome data (Section 2(vi)) cannot sensibly be used for published observational
studies, since adjustment for confounders would almost always be considered the more im-
portant issue. Measurement error a�ects the strength of associations, and its extent and impact
may vary across studies. Getting individual patient data from observational studies is even
more di�cult than for randomized trials, while the e�ects of publication bias in the available
literature may be more extreme. For all these reasons, the results from meta-regression of
observational studies are even harder to interpret than those from randomized trials.
There are additional issues in meta-regression that we have not emphasized in this paper. For

example, the linearity of the regressions for continuous covariates is usually assumed without
comment (although the aspirin example above is an exception in this regard). Within the
three examples presented, no multiple regressions were undertaken to investigate confounding,
although some examples do exist [33]. The multivariate exploration of both trial and patient
characteristics in meta-analysis has been expressed as an aspiration [5], but lack of data
usually prevents anything other than very modest progress towards this ideal in practice.
None of our three examples commented on the extent to which the heterogeneity is explained
by the covariates considered, although this idea is part of the motivation of meta-regression.
The proportion of between-trial variance explained will usually of course only be imprecisely
estimated.
The description of weighted regression methods in published papers is often ambiguous.

A phrase such as ‘the regression was weighted by the inverse of the within-study variances’
does not indicate whether the weights were taken equal to the inverse variances (resulting
in a �xed e�ect meta-regression) or proportional to the inverse variances (resulting in a
multiplicative rather than additive adjustment for residual heterogeneity) [9]. There is little
to motivate the use of a multiplicative variance adjustment factor in meta-regression, since
the within-study variances are known, although this is what is achieved by the conventional
use of weighted regression programs in most statistical software. An additive component
for the residual variance is more reasonable in both meta-regression [9] and other contexts
[34], although the results from using multiplicative or additive components can be similar in
practice. We and others [35; 36] strongly advocate the use of such random e�ects models,
but recognize that some authors would disagree with us [37].
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In general, no protocol is available for meta-analyses presented in published papers, and
lack of space limits both description of methods and interpretation of results. One solution
is that the Web could be used to give further details, as is starting to be done for some
journals. Another practical issue is whether aspects of study quality, such as randomization
concealment, should be used as a covariate before any variables representing clinical diversity
are considered. Statistical issues for future research into meta-regression methods include how
the number of covariates that can reliably be included depends on the number of trials (and
their imprecisions) [38], the handling of multi-arm trials when individual patient data are
not available, the appropriate use of regression diagnostics and sensitivity analyses [39; 40],
and whether there are biases in using derived statistics measured after baseline as covariates.
Examples of the latter include surrogate markers, such as extent of serum cholesterol reduction
[29] or CD4 count increase [18], in considering disease event rates, or the standard error of
the treatment e�ect as a covariate to discern publication bias [41].
Individual patient data, both of outcomes and covariates, can alleviate some of the problems

in meta-regression. In particular within-trial and between-trial relationships can be more clearly
distinguished, and confounding by individual level covariates can be investigated. Neverthe-
less many of the problems remain, not least those related to prespeci�cation and data dredg-
ing. Statistical methods for individual patient data meta-regression also need exposition and
development [17]. At the present time, however, most meta-analyses (and meta-regressions)
are based on published information. Heterogeneity inevitably remains a di�cult issue in meta-
analysis but, as this paper has pointed out, both meta-analysts and consumers of their research
need to be aware of the special hazards in the interpretation of meta-regressions.
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